Comments and discussion on issues in as well as on contemporary AIDS issues
RSS icon Home icon
  • The not so SMART study: a very short postscript

    Posted on June 12th, 2009 admin No comments

    I believe the SMART study team have submitted a response to Justin Stebbing and Angus Dalgleish’s comments in the Lancet Infectious Diseases, that was referred to in a previous post:

    The not so SMART study.

    The explanation that the huge discrepancy in the number of deaths in the US and non US sites was due to the fact that non US sites started to enrol participants 2-3 years later than   US sites,  was addressed in the comments in the Lancet Infectious Diseases.

    Here is the relevant part:

    “Whereas most non-US sites commenced patient recruitment 2—3 years after the US sites, it is unlikely that longer protocol exposure could account for this difference. We are told that there were 38 deaths in the first year and 47 deaths thereafter. Hence, assuming that all six non-US deaths occurred in the first year, there remain 32 deaths (38 minus six) in the USA from the first year of the study—about five-fold more than expected based on the non-US mortality rate”.

    Whatever explanation is to be offered by the SMART team, even if turns out to be consistent with their conclusions, the following questions remain.

    Why was information on the distribution of deaths withheld for so many years?

    Why was this information, when it did appear in the article by Kuller et al in PLoS last year,  ignored by community commentators  to whom HIV infected people and their advocates look to for help.?

    Did they not notice it? (I did not).

    Did they think it was of no significance?

    Hopefully the SMART team’s response will put an end to this mystery of why, with more or less the same number of participants in US and  non US sites,   79  people died  at  US sites while there were only 6 deaths at sites  outside the US.

  • Endemic Infections in Africa have everything to do with HIV/AIDS and are a long neglected therapeutic target.

    Posted on June 6th, 2009 admin 1 comment

    An article with the striking title “Africa’s 32 Cents Solution for HIV/AIDS” was just published in PLoS Neglected Tropical Diseases.  It can be seen here:

    This dramatic title refers to the cost of treatment of schistosomiasis with praziquantal.

    Schistosomiasis is an infection caused by parasitic worms, or helminths., of the genus  Schistosoma.    Most of the 200 million cases of schistosomiasis in the world occur in Africa.

    The species, Schistosoma haematobium is estimated to infect about 112 million people in sub Saharan Africa.  So its high prevalence puts it in the same class as that of TB, malaria and HIV.  It is responsible for a huge burden of morbidity particularly in children and young adults.

    S. haematobium  has a complicated life cycle, some of which takes place in snails.  People are infected by organisms released by snails living in fresh water. These organisms can penetrate the skin of any body part that is immersed in snail infested water.  S. haematobium affects the urinary tract.  The disease it causes is commonly called bilharzia.

    I was very conscious of its danger as a child growing up in Zimbabwe, with signs at several small lakes around Bulawayo warning one not to swim in them because of the danger of bilharzia.

    Peter Hotez and colleagues article is a welcome addition to the already substantial literature that strongly suggests that many endemic infections, not only with helminths, but also with bacteria, protozoa and viruses can increase the transmission of HIV and most probably  have a detrimental effect on the course of HIV infection.

    This paper concentrates on the local effects of S.haematobium on the female genital tract , where lesions caused by  schistosome egg deposition result in mucosal patches, that can bleed during sexual intercourse. The authors state “Presumably, the schistosome egg granulomas produce genital lesions and mucosal barrier breakdown to facilitate HIV viral entry” and go on to compare this to the process by which herpes simplex ulcers increase susceptibility to HIV.

    This does seem obvious – there is a mucosal break, so HIV has a way in.

    In fact in the case of herpes simplex, this seemingly obvious connection is probably not correct.   The large Partners in Prevention study, recently completed, found that acyclovir, a drug effective in treating herpes does not reduce the risk of HIV transmission.  The drug however was associated with a reduction in the number of recurrences of herpetic ulcerations, and significantly slowed HIV disease progression.  I have written about this in another post.

    As with herpes simplex, it is possible that systemic effects of schistosomiasis, may be much more significant, or at least as significant, as local effects in enhancing the transmission of HIV.    Of course, both local and systemic effects may play a role in enhancing HIV transmission.  The systemic effects include an impairment of virus specific immune responses; immune activation may also increase susceptibility to HIV and promote its replication.

    The influence of associated infections on the infectivity of HIV extends far beyond that of schistosomiasis.  Peter Hotez  (the lead author of the above article) has done a great service by bringing attention to a number of devastating neglected tropical diseases.  This important article can be seen in the Lancet of May 2nd, 2009, (Lancet 2009 373;1570-1575).

    The title of the article is:

    “Rescuing the bottom billion through control of neglected tropical diseases”

    By Peter J Hotez, Alan Fenwick, Lorenzo Savioli and David Molyneux

    I have copied this table from the above article:


    These are incredibly huge numbers.

    Many of these infections occur in children and young adults and not only  have an impact on life expectancy, but significantly are the cause of chronic debility particularly in young people.

    Some also have an activating effect on HIV replication by several mechanisms, some of which  have been understood for well over ten years.  The resulting acceleration of HIV infection,  by  increasing  HIV viral loads,  as well as by other mechanisms increases the transmission of this virus.

    The health of hundreds of millions of individuals could be improved by efforts to prevent and treat these infections.  These infections are also appropriate therapeutic targets in the fight against HIV/AIDS.

    Despite a great deal of evidence for the interaction of multiple bacterial, viral, protozoal and helminthic infections and HIV,  this association has been inexplicably neglected in providing  additional approaches to controlling the epidemic..

    I had what might be described as a  misfortune to have been a member of President Mbeki’s panel on AIDS, an almost surreal experience I should write about.  The following is an excerpt from something I wrote for this panel almost 10 years ago:

    “The crucial difference in Africa, as opposed to the US, is the high prevalence of associated infections. These include STDs, TB, malaria and other protozoal infections, helminthic and bacterial  infections. Such infections would supply sustained signals, such as IL-1  IL-6 and TNF, known to activate HIV.  Some can also upregulate the expression of chemokine co receptors required for HIV entry.  Some of these infections are  somewhat immunosuppressive themselves, an effect contributed to by the secretion of IL-10.37 Sexual transmission of HIV is also known to be facilitated by a high viral burden.38 This would also be the consequence of the HIV activating effect of frequent associated infections in Africa.”

    This was almost 10 years ago, and since then literature has continued to accumulate documenting the detrimental interactions between HIV and multiple infectious agents.

    About two years ago I made a presentation at the Prevention Research Center at Berkeley, trying to understand why endemic diseases had been so neglected in our attempts to control AIDS, particularly in Africa.  I thought that part of the problem was poor interdisciplinary communication and understanding.   Specifically, there might be difficulties in   communications between public health experts and microbiologists.   Possible public health implications of the findings of microbiologists might not be perceived without additional explanation.  I illustrated this with a specific article.

    I used an excellent article to illustrate this problem.

    The article is called “Contribution of Immune Activation to the Pathogenesis and transmission of HIV type 1 infection” and the authors are Stephen Lawn, Salvatore Butera and Thomas Folks.   (Clinical Microbiology Reviews. Oct 2001 14; 753-777)

    This is part of what I said in California  in trying to illustrate the difficulty in communication:

    “Of great interest – because of its implications for disease control was the discovery that other infections, viral, bacterial, protozoal and helminthic, could influence the course of HIV disease.  Generally the effect was to enhance HIV replication, but a few seemed to ameliorate – at least temporarily, the course of infection.  Scrub typhus, measles and perhaps a form of viral hepatitis, may have a  transient beneficial effect on HIV disease, but these are exceptional cases. Most co-infections have the opposite effect.

    We now come to an example of observations made by microbiologists and work done at a molecular level with enormous implications for the control of AIDS in Africa.   This example is a review (cited above)  explaining in great technical detail how the replication of HIV can be enormously enhanced by concurrent endemic infections, and how this not only accelerates the progression of HIV disease, but also facilitates its transmission. The authors show in molecular detail how many viral, bacterial, protozoan and helminthic infections can affect HIV replication.  Included among these are common intestinal worms and water borne bacterial infections, causing severe diarrhea particularly in infants.  The discussion is largely concerned with the possible beneficial effect of drugs that might counteract this enhancement of HIV replication. There is one short sentence on public health interventions that might eliminate this problem altogether. It is of particular interest because of its brevity in a rather long article.   There is also a curious statement that where antiretroviral drugs are unavailable, measures to control endemic infections may be a useful approach.  This comment is reproduced below, and somehow ignores the significance of the implication that control of these endemic infections requires no other justification than as a measure to control AIDS.

    This paper, because of its immunological and molecular detail is not too likely to find its way to an epidemiologist or public health expert,  but for one trained in these technicalities, I would suppose the public health implications would be immediately evident.

    This particular paper also is a great illustration of the compartmentalization of information, and the difficulties of interdisciplinary communication.

    Below is an illustration from the body of the article: there is much more just like this.  A person with no training in molecular biology or virology would not be likely to spend any time with this illustration.


    However if one turned a few pages the following diagram may just be of some interest. But again this is unlikely.

    The part that would be of interest to a public health professional , if noted,  is contained in the large arrow at the bottom right of the illustration.  In this rather complex diagram it would be quite easy for the public health expert to be sufficiently distracted so that the bottom right hand corner would be easily missed.


    There is a long discussion, quite technical in nature, but at least the authors find space for the following brief comment.

    “Prevention and Treatment of Coinfections

    The widespread use of HAART in the treatment of HIV-

    infected persons in westernized countries has resulted in a

    phenomenal decrease in the incidence of opportunistic infec-

    tions and has greatly increased survival. For these individuals,

    the antiretroviral drugs are the major determinant of prognosis

    and the potential cofactor effect of opportunistic infections is

    now a more minor consideration. However, the vast majority

    (>95%) of the world’s HIV-infected people do not currently

    have access to antiretroviral drugs. Most of these people live in

    developing countries, where the quality and access to health

    care is often limited and where there is a high incidence of

    endemic infectious diseases such as malaria, TB, and infections

    by helminths and waterborne pathogens which may adversely

    affect HIV-1 disease progression. Prevention or early treat-

    ment of these diseases may therefore represent an important

    strategy in addressing the HIV-1 epidemic in developing coun-

    tries”. –

    In the above quotation, the authors are overoptimistic in their assertion that the cofactor effect of opportunistic infections is now a more minor consideration in developed countries.  Valacyclovir, a drug that inhibits the replication of  many members of the herpes virus group, but has no direct effect on HIV was reported to reduce HIV viral loads in the absence of antiretroviral therapy. In the developed world, active herpes virus infections are common in the setting of HIV infection, although most will be asymptomatic. For example, Cytomegalovirus, Epstein Barr Virus and Human herpes virus type 6 are not infrequently found to be active in HIV infected individuals. Valacyclovir will have an effect on these viruses, and may well find a place in the treatment of HIV infection in developed countries.  Indeed it may not be uncommon for experienced physicians here (in the US) to prescribe related anti herpes medications to their HIV infected patients. I certainly do.

    There is another aspect, a little more difficult to establish and perhaps altogether conjectural.  This is that we are presented with the question of why we need AIDS to justify interventions that have long been established to themselves improve the health of populations.  These include the provision of sanitation and clean water, the control of malaria and TB, and something as simple as getting rid of worms.  In the public’s assessment of the health needs of developing countries the information that is used is largely to be found in popular media, newspapers, magazines and TV.  Those who report in turn receive information from professional sources, and maybe it is here that the interdisciplinary barriers to communication I have been talking about have their effect. Thus the AIDS epidemic is perceived to be the greatest threat to the future of Africa, even though malaria kills more people, and common endemic infections contribute to an abysmal life expectancy.   (This was written 2-3 years ago and was probably incorrect even at that time;  estimates are that today there are  1.5-2 million deaths from AIDS in Africa, with close to 1 million deaths from malaria.  Malaria though  is responsible for a greater  number of deaths in children under 5 years of age).

    It continues to be remarkable that although evidence has existed for years that many of these infections can interact with HIV infection to increase its infectivity and accelerate disease progression, those who advocate for, and allocate funds to fight HIV/AIDS seem oblivious to the relevance and implications of these interactions.

    This effort of course needs absolutely no justification, but its funding is small compared to the resources that have been made available to combat HIV/AIDS –  but from all that has been described funding for these endemic infections is in fact also funding to fight HIV/AIDS “.

    Those were comments made 2-3 years ago.

    While malaria and tuberculosis are now receiving attention and are included with AIDS in some programs,   many other endemic infections  continue to be neglected.

    Going back much further in time,  interest in the activating effects of associated infections on HIV replication began within the first 10 years of the epidemic.  This started with the demonstration that proinflammatory cytokines, TNF alpha or IL 6, for example could greatly accelerate HIV replication.

    Of course these cytokines appear in the course of many different infections.  When viral load tests became available this effect was well understood by patients and physicians in N America and Europe. It became common wisdom that an HIV infected person who had a febrile illness, or had even received a flu vaccine  should delay viral load testing because the infection or vaccination was frequently associated with temporary rises in HIV viral loads.

    The implications for geographic areas where the infections were far from temporary seemed to escape notice.

    Thus endemic infections in Africa do have everything to do with HIV/AIDS.  There are numerous preventative and therapeutic measures available to control many of these infections,  and some are inexpensive.  Even something as simple as deworming may be useful.  Ascaris lumbricoides, the common intestinal round worm also is associated with immune activation and is easily got rid of.  There is a report that doing this with a drug called albendazole actually raised CD4 counts. (Walson JL et al. Albendazole treatment of HIV-1 and helminth co-infection: a randomized, double-blind, placebo-controlled trial. AIDS 22:1601-1609, 2008).

    The person who has been studying immune activation and the association of parasitic infestations and AIDS for the longest time is  Zvi Bentwich.   I can’t remember when his first  publication on this issue appeared but by the mid 1990s he was publishing on this association in Ethiopian immigrants to Israel.   Zvi Bentwich deserves the greatest credit for his early recognition of the importance of this association, its significance regarding immune activation and for his continuing contributions.   He pointed out the relevance of schistosomiasis to AIDS  (and TB) at least 10 years ago.

    The connection of so many endemic infections with AIDS  in Africa is also a connection of poverty with AIDS.  I saw an absurd and instantly forgettable paper entitled something like “Poverty does not cause AIDS” a few years ago.    Of course poverty is not the direct  cause of ascariasis,  schistosomiasis, tuberculosis, or any number of devastating infections.  Poverty is a very significant factor in  the acquisition of these infections, and as such can certainly be regarded as having a causative role.

    The lives of impoverished populations are ravaged and shortened by these infections. Many of these infections also interact with HIV to compound the devastation they cause.  Poverty, multiple endemic infections and HIV are intimately intertwined and in many instances reciprocally affect each other.  For example the debility associated with schistosomiasis has an impact on an individual’s productivity, with economic consequences not only for the individual but for the larger community.

    Controlling the AIDS epidemic in Africa must also include measures to prevent and treat the multiple endemic infections that affect hundreds of millions of individuals.

    To conclude this post I want to recommend a book published about four years ago by Eileen Stillwaggon, a professor of economics.  It is called “AIDS and the ecology of poverty” and is published by the Oxford University Press.